WINDOW SIMULATION REPORT

NFRC 100: Procedure for Determining Fenestration Product U-Factors

NFRC 200: Solar Heat Gain Coefficient and Visible Transmittance

NFRC 500: Procedure for Determining Fenestration Product Condensation Resistance Values

REPORT PREPARED FOR:

Chip Vaughn Great Land Windows 261 College Road Fairbanks Alaska 99701 (907) 479-8437

REPORT NUMBER:

ILF10003w-b

PRODUCT LINE:

300 Fixed

August 23, 2010

Enermodal Engineering Ltd.
582 Lancaster St. W.
Kitchener ON
N2K 1M3
(519) 743-8777
office@enermodal.com

TABLE OF CONTENTS

PG.	TITLE
3	Product Line Description
4	Report Information
5	Simulation Notes
6	Baseline Product
7	Glazing Library for Manufacturer
8	NFRC Simulation Data
9	Appendix A Product Drawings

Manufacturer: Great Land Windows

Report Number: ILF10003w-b

Product Line: 300 Fixed

Frame: Fiberglass with Styrofoam

Sash: N/A

Thermal Break: N

Edge of Glass: The glazing is held by a neoprene glazing wedge on the interior edge and foam

weatherstripping on the exterior edge.

Glazing: Glazing options are triple, quint, argon and krypton fill.

Spacer: Super Spacer E-class: OF-D; Steel: CS-D

Weatherstripping: N/A

Simulations: Performed using WINDOW 5, and THERM 5.

General: This product line includes the 300 Fixed manufactured by Great Land Windows.

This is a reissued report of ILF701w-i.

Michael Barclay, P.Eng.

Michael Barclay, P.Eng.

Simulator

Simulator in Responsible Charge

The windows documented in this report were simulated in accordance with the NFRC 100: Procedure for Determining Fenestration Product U-Factors (2010), NFRC 200: Procedure for Determining Fenestration Product Solar Heat Gain Coefficient and Visible Transmittance at Normal Incidence (2010) and NFRC 500: Procedure for Determining Fenestration Product Condensation Resistance Values (2010).

The windows were simulated using WINDOW 5 and THERM 5 computer programs as specified in NFRC 100 and NFRC 200. The most currently approved spectral data files from NFRC were also used. The WINDOW program models the one-dimensional heat flow through the center-of-glass portion of the window. The THERM program models the two-dimensional heat flow through the frame, edge-of-glass, divider, and divider-edge portions of the window. The input data for both programs is based on manufacturer's specifications. Defaults for material thermal and optical properties are given in the computer programs. When values other than defaults were used, they are documented.

Ratings values included in this report are for submittal to an NFRC-licenced IA and are not meant to be used directly for labeling purposes. Only those values identified on a valid Certification Authorization Report (CAR) by an NFRC accredited Inspection Agency (IA) are to be used for labeling purposes.

DISCLAIMER:

This window simulation report was generated by Enermodal Engineering Ltd. of Kitchener, ON. The report relates only to the items specified.

No part of this report may be reproduced except in full, without the written consent of Enermodal Engineering Ltd.

Enermodal Engineering Ltd. and its employees neither endorse nor warrant the suitability of the product simulated. Every effort was taken to accurately model the performance of the windows documented in this report. Because of the large amount of input data and analyses, it is possible that errors or omissions could occur.

Neither Enermodal Engineering Ltd. nor any of its employees shall be responsible for any loss or damage resulting directly or indirectly from any default, error, or omission.

SIMULATION NOTES

- 1 Unless otherwise stated. All continuous hardware that does not create a thermal bridge such as hinges, balances, locks etc. are not modeled.
- 2 This is an "NFRC 100: Procedure for Determining Fenestration Product U-Factors" Certification Report.
- 3 This is an "NFRC 200: Procedure for Determining Fenestration Product Solar Heat Gain Coefficient and Visible Transmittance at Normal Incidence" Certification Report.
- 4 This is an "NFRC 500: Procedure for Determining Fenestration Product Condensation Resistance Values" Certification Report.
- 5 Unit conversions are performed according to NFRC601.
- 6 All glazing surface emissivities are assumed to be 0.84 unless otherwise stated.
- 7 The gas fill method is single probe with 90% argon and 90% krypton fill.

NFRC - U-Value Baseline Product

Manufacturer: **Great Land Windows** Mfr contact:

Chip Vaughn Michael Barclay, Simulator in Responsibe P.Eng.

300 Fixed

Charge:

IA Name:

Product Type: FIXD

Fiberglass with Styrofoam

Report number: ILF10003w-b Date: 8/23/2010

Revised date:

Product line:

CPD:

Frame:

Product Description		272-kry-TC88-kry-TC88-kry-272, bsl
Glass Thick 1 (in)	0.154	
Glass Thick 2 (in)	0.003	
Glass Thick 3 (in)	0.003	
Glass Thick 4 (in)	0.154	
Glass Thick 5 (in)		
# of Glazing Layers	4	
Surface #2 Emissivity	0.04	
Surface #3 Emissivity	0.13	
Surface #4 Emissivity	0.11	
Surface #5 Emissivity	0.13	
Surface #6 Emissivity	0.11	
Surface #7 Emissivity	0.04	
Surface #8 Emissivity		
Gap 1	0.372	
Gap 2	0.372	
Gap 3	0.372	
Gap 4		
Validation Size		1200 x 1500 mm
	4	7.244 x 59.055 in
Spacer Type	CS-D	
Grid	N	
Gap Fill	Air (10%	b) / Krypton (90%) Mix
U-Value	0.17	

ID	Name	No. of Layers	Mode	Tilt	Environmental Conditions	Keff (Btu/h*ft*F)	Overall Thickness (in)	Uval (Btu/h*ft²F)	SHGC	Visible Transmittance
1	cl-arg-TC88-arg-Cl	3	#	90	NFRC 100-2001	0.016	1.364	0.145	0.510	0.650
2	SB60-arg-SB60-arg-Cl	3	#	90	NFRC 100-2001	0.013	1.354	0.124	0.308	0.582
3	cl-kry-TC88-kry-cl-kry-TC88-kry-cl	5	#	90	NFRC 100-2001	0.009	1.360	0.083	0.384	0.472
14	272-kry-TC88-kry-TC88-kry-272	4	#	90	NFRC 100-2002	0.007	1.437	0.070	0.291	0.399

NFRC Simulation Data - Summary

Manufacturer: Great Land Windows

Series/Model #: 300 Fixed

Spacer: Super Spacer E-class: OF-D; Steel: CS-D

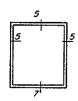
Operator Type: FIXD Sim Lab Code: SEEL

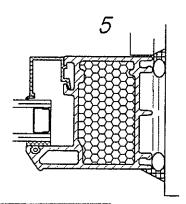
Model Size: 1200 x 1500 Report number: ILF10003w-b Thermal Break: N Date: 8/23/2010

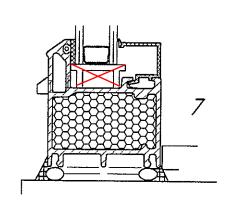
Revised Date:

Rating Procedure: 2010

Mfr Product Code	Product Number	Gap 1 (in)	Gap 2 (in)	Gap Fill 1	Gap FIII 2	Emissivity Surface 2	Emissivity Surface 3	Emissivity Surface 4	Emissivity Surface 5	Tint	Spacer	Grid Type	Grid Size	U-Factor (Btu/h*ft²F)	SHGC	VT	*CR
SB60-arg-SB60-arg-Cl, se	0001	0.50	0.50	ARG	ARG	0.03		0.03		CL	OF-D	N		0.16	0.25	0.47	72
cl-arg-TC88-arg-Cl, sl	0002	0.56	0.56	ARG	ARG		0.13	0.11		CL	CS-D	N		0.20	0.41	0.52	62
cl-kry-TC88-kry-cl-kry-TC88-kry-cl, sl	0003	0.25	0.25	KRY	KRY		0.13	0.11		CL	CS-D	N		0.14	0.31	0.38	66


^{*}Note: The Condensation Resistance results obtained from this procedure are for controlled laboratory conditions and do not include the effects of air movement through the specimen, solar radiation, and the thermal bridging that may occur due to the specific design and construction of the fenestration system opening.


APPENDIX A Product Drawings



SERIES 300/301 FIXED WINDOW

Report Number:

| LF70|W-i

JUL 2 6 2007

Enermed aerine | Aerine

22mm(DOUBLE GLASS) GLASS STOP(PVC)

5.08mm F.C. 4.06mm F.C. 3.04mm F.C. GLAZING WEDGE(NEOPRENE)

35mm(TRIPLE GLASS) GLAZING STOP(ALUMINUM)

DR. BY.

DATE Feb.2007

SHEET 1/6

300-100

INLINE FIBERGLASS

30 Constellation Court

PARTS LIST

SERIES 300 & SERIES 301
TILT'N TURN/CASEMENT/AWNING

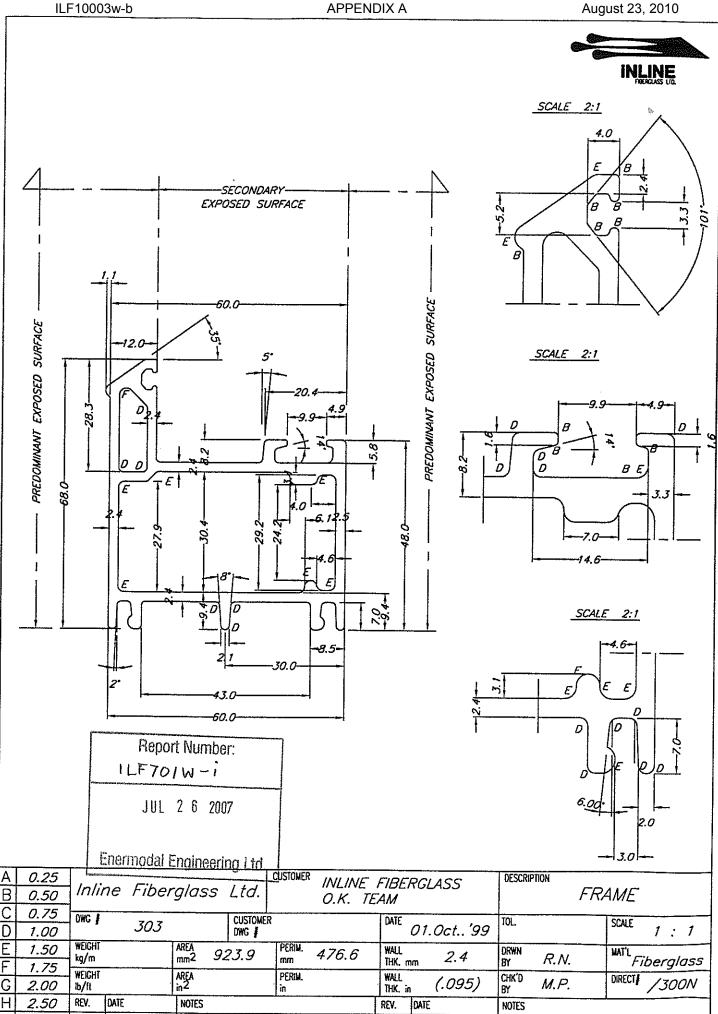
Toron	nto, Ontario M9W 1K1		75 to 1 to		300-100	
Parts #	Descri	ption	Colour	Price	Comments	
			Not painted			
301*		Door sash	White		Fiberglass, S/L=	
			Other			
			Not painted			
301D*	301D* ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Door sash with drip deflector	White		Fiberglass, S/L=	
			Other			
	ń.		Not painted			
302		Window sash	White		Fiberglass, S/L≕	
			Other			
	ń.	ń.				
302D	302D	Window sash with drip deflector	White		Fiberglass, S/L=	
3	3		Other			
303*		Perimeter frame	White		Fiberglass, S/L=	
	h T		Other			
	[] ([Not painted		File and a se	
304		Mullion / Transom	White		Fiberglass, S/L=	
			Other			
		Astragal	Not painted			
305		(2 leaf opening)	White		Fiberglass, S/L=	
			Other			
	S A	Patio door sill	Not painted			
308/309		(Alum. / PVC)	White Heport N Other ILF	umber: 701W - i	Alum. / PVC, S/L=	
310	~~	Connecting bar (for frame)		6 2007	PVC, S/L=	
311		Glass stop 22mm(7/8")	Not painted Englished White	gineering Ltd.	PVC, S/L=	
Ì			Other			

Toronto, Ontario M9W 1K1

PARTS LIST

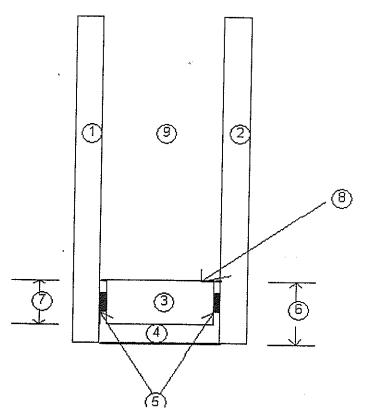
SERIES 300 & SERIES 301 TILT'N TURN/CASEMENT/AWNING DR. BY.

DATE Feb.2007


SHEET 2/6

300-100

,0,0,	ito, Ontario M9VV TKT	**************************************					
Parts #	Descri	ption	Colour	Price	Comments		
	য় 		Not painted				
312		Glass stop 35mm(1 3/8")	White		Aluminum, S/L=		
	7~	<u> </u>	Other		0/2-		
	5.08mm F.C. \\ 4.06mm F.C. \\ 3.04mm F.C.	Glazing wedge			Neoprene, /roil		
313		Air seal plug left or right (for astragal)			PVC, / per carton		
315		Door sash riding block			PVC, S/L=		
319		Glass setting block			PVC, S/L=		
320		Glazing pocket filler			2000'/roll		
321		Adhesive glazing tape 1/8" x 1/2"			Neoprene, 100'/roil		
113	↔	Bulb-type gasket]	Rubber		
323	ଶ୍	Bulb-type gasket			/roll Rubber		
324		Window sash riding block			/roll PVC, S/L=		
737B		Strap anchor	Report	Yumber;	Falv. steel, / per carton		
325		Door sash shearblock		0 0007	Nylon+30% glass filled /per carton		
326		Window sash shearblock	FEHERMODIAI E	ngineering i.td.	Nylon+30% glass filled /per carton		
327		Perimeter frame shearblock			Nylon+30% glass filled /per carton		

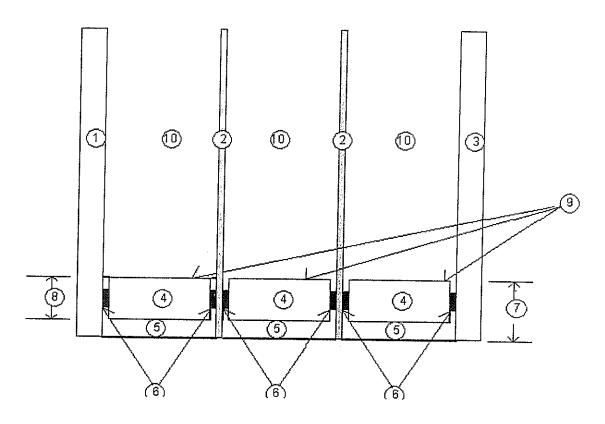

300

Oct. 13. '99

· 「一日のできる」のでは、「日本のでは、「日本のできる」のできる。

Edge of Glass Detail [Super Spacer] (double glasses

Location	Detail	Description	Size
1	Glass Type	as per option	3 mil
2	Glass Type	as per option	3mil s.
3	Dessicant	Molecular Sieve Type 3A	
. 4	2nd Seal	Polysulfide or Polyurethane	N/A
5	Primary Seal	Structural acrylic side adhesive	N/A
6	Bite		9.5 mil
7	Spacer Height	EdgeTech "E" class Superspacer	4.75 mil
8	Spacer Type	EdgeTech "E" class Superspacer	7.1 mil
9	Gas Fill	95% Argon, 5% Air	or 100 % Air as per option


Report No.

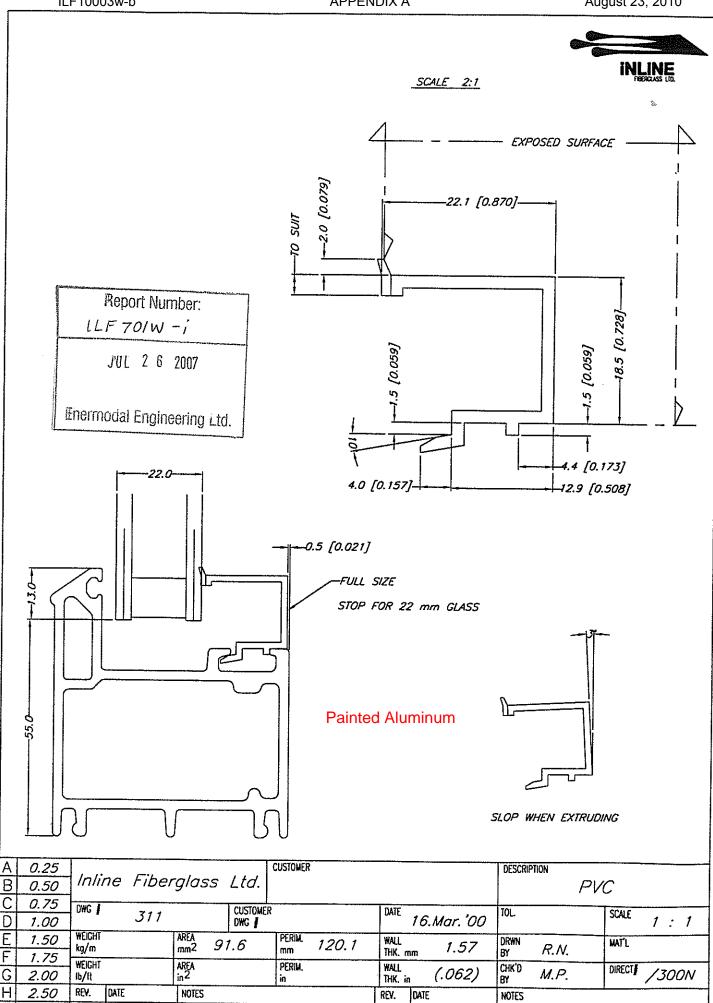
ILF 701 w n

AV6 0 1 2007

Enermodal Engineering Ltd.

Edge of Glass Detail (Double Heat Mirror)

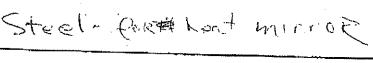
Location	Detail	Description	Size
1	Glass Type	clear	3 mil
2	Heat Mirror Type	HMTC88	.076 mil
3	Glass Type	clear	3 mil
	Dessicant	Molecular Sieve Type 3A	
	2nd Seal	Polyurethane (PRC)	
6	Primary Seal	P.I.B. (Polyisobutylene)	0.5 mil
	Bite		12.7 mil
		allmetal steel	7.9 mil
	Spacer Type	allmetal steel	
10	Gas Fill	Krypton 95%, 5% air	


Report Number:

ILF 701W-N

AUG 0 1 2007

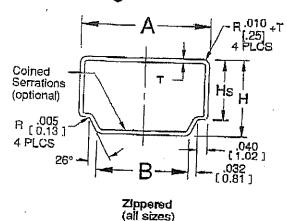
Enermodal Engineering Ltd.


3.00

04/17/2007 07:30

250P


9055641814


att. That

ALLMETAL.

250P Air Spacer

.010₊T Coined Serrations (optional) R [0.13]4 PLCS

Perforated (1/4" [6.5mm] and wider)

Tolerance: All dimensions ±.005 [.13mm] unless otherwise specified

IN			Ţs	T	
	MM	IN	MM	IN	MM
.302	7.67	-240.	6.10		.20
.305	7.75	244	6.20		.25
.307	7.80	.246	6.25		.30
.311	7.90	248	6.30		36
-311	7.90	.248			.36
. 313	7.95				
					.38
					41
					41 47
	.305 .307 .311	.305 7.75 .307 7.80 .311 7.90 .311 7.90 .313 7.95 .315 8.00 .315 8.00	.302 7.67 240 .305 7.75 244 .307 7.80 246 .311 7.90 .248 .311 7.90 .248 .313 7.95 249 .315 8.00 .250 .315 8.00 250	.302 7.67 240 6.10 .305 7.75 244 620 .307 7.80 246 625 .311 7.90 248 6.30 .311 7.90 248 6.30 .313 7.95 249 6.32 .315 8.00 250 6.35 .315 8.00 250 6.35	.302 7.67 240 6.10 .008 .305 7.75 244 620 .010 .307 7.80 246 6.25 .012 .311 7.90 248 6.30 .014 .311 7.90 .248 6.30 .014 .313 7.95 .249 6.32 .015 .315 8.00 .250 6.35 .016 .315 8.00 .250 6.35 .016 .315 8.00 .250 6.35 .016 .315 8.00 .250 6.35 .016 .315 8.00 .250 6.35 .016 .315 8.00 .250 6.35 .016 .315 8.00 .250 6.35 .016 .315 8.00 .250 6.35 .016 .315 8.00 .250 6.35 .016 .315

Notes:

- 1. Dimensions are in decimal inches; dimensions in [] brackets are in mm.
- 2. Available with serrations at no extra charge on inside of Aluminum spacer at location indicated above; not recommended for spacer to be used for bending.
- 3. Material tolerances can be found on Material Specifications Data page (ii).
- 4. Thermal properties can be found on Thermal Performance Data page (iii).

Report Number: 1LF 701 W-n

AUG D 1 2007

Enermodal Engineering Ltd.